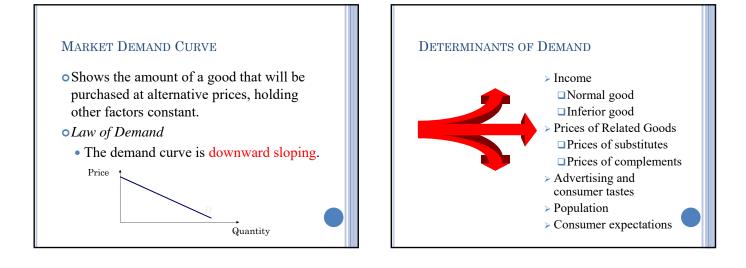
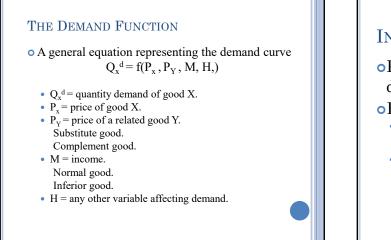
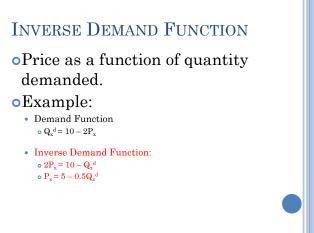
# Managerial Economics

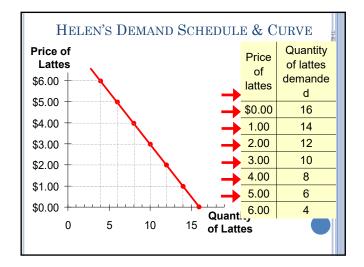
(W3) Market forces: **Demand and Supply** 

### **OVERVIEW**


#### I. Market Demand Curve


- The Demand Function
- Determinants of Demand
- Consumer Surplus


### II. Market Supply Curve

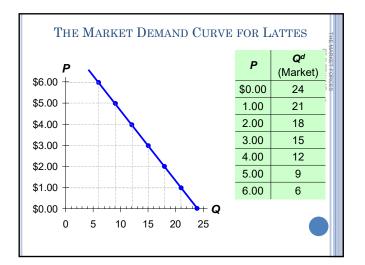

- The Supply Function
- · Supply Shifters
- · Producer Surplus

- III. Market Equilibrium **IV. Price Restrictions**
- V. Comparative Statics



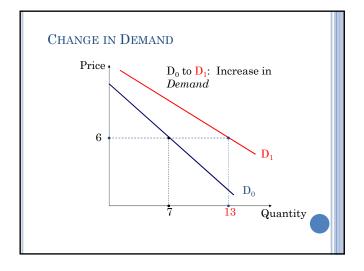








### MARKET DEMAND VERSUS INDIVIDUAL DEMAND


• The quantity demanded in the <u>market</u> is the sum of the quantities demanded by <u>all buyers at each price</u>.

• Suppose Helen and Ken are the only two buyers in the Latte market.  $(Q^d = \text{quantity demanded})$ 

| Price  | Helen's <b>Q</b> d |   | Ken's <b>Q</b> ª |   | Market <b>Q</b> <sup>d</sup> |   |
|--------|--------------------|---|------------------|---|------------------------------|---|
| \$0.00 | 16                 | + | 8                | = | 24                           |   |
| 1.00   | 14                 | + | 7                | = | 21                           |   |
| 2.00   | 12                 | + | 6                | = | 18                           |   |
| 3.00   | 10                 | + | 5                | = | 15                           |   |
| 4.00   | 8                  | + | 4                | = | 12                           |   |
| 5.00   | 6                  | + | 3                | = | 9                            |   |
| 6.00   | 4                  | + | 2                | = | 6                            | 8 |

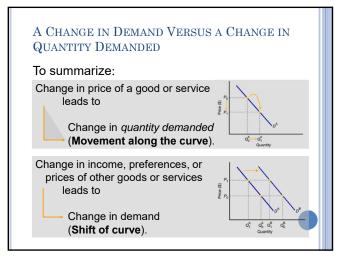




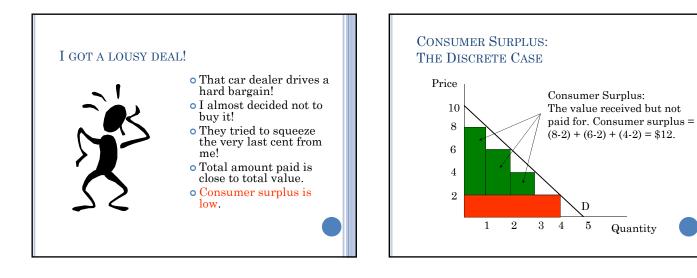


### CHANGE IN QUANTITY DEMANDED VERSUS CHANGE IN DEMAND

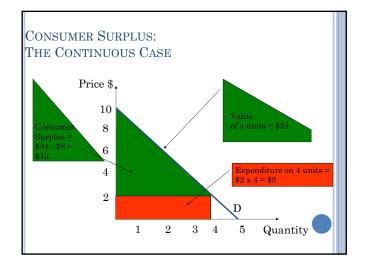
• The distinction between change in demand and change in quantity demanded is vital to understand the analysis of demand

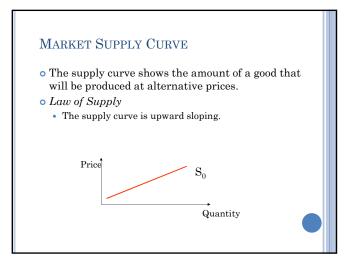

Change in Quantity Demanded

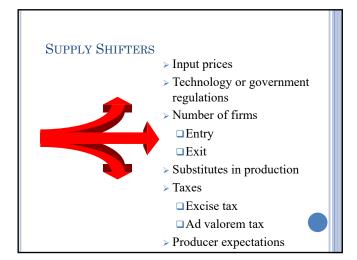
- Movement along the demand curve.
- Caused by a change in the price of the product


• Change in *Demand* 

- A shift in the demand curve, either to the left or right
- Caused by a change in a determinant other than the price (income, tastes, etc)


| CHANGE IN QUANTITY DEMANDED VERSUS<br>CHANGE IN DEMAND |                                              |  |  |
|--------------------------------------------------------|----------------------------------------------|--|--|
| Variables that<br>Affect Quantity Demanded             | A Change in This Variable                    |  |  |
| Price                                                  | Represents a movement along the demand curve |  |  |
| Income                                                 | Shifts the demand curve                      |  |  |
| Prices of related goods                                | Shifts the demand curve                      |  |  |
| Tastes                                                 | Shifts the demand curve                      |  |  |
| Expectations                                           | Shifts the demand curve                      |  |  |
| Number of buyers                                       | Shifts the demand curve                      |  |  |





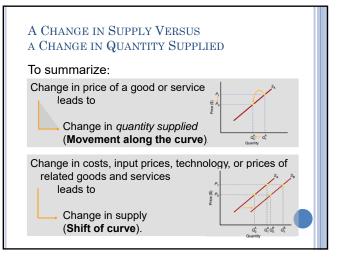

Quantity





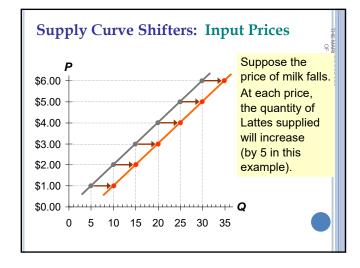


#### CHANGE IN QUANTITY SUPPLIED VERSUS CHANGE IN SUPPLY


• As in the demand, attention must be paid to the difference between changes in the supply and changes in the quantity supplied

- Change in *Quantity Supplied* 
  - Movement along the supply curve
  - Caused by a change in the market price of the product

• Change in Supply


- A shift in the supply curve, either to the left or right
- Caused by a change in a determinant other than price (input prices, technology, expectations, etc)

| CHANGE IN QUANTITY SUPPLIED VERSUS<br>CHANGE IN SUPPLY |                                              |  |  |  |
|--------------------------------------------------------|----------------------------------------------|--|--|--|
| Variables that<br>Affect Quantity Supplied             | A Change in This Variable                    |  |  |  |
| Price                                                  | Represents a movement along the supply curve |  |  |  |
| Input prices                                           | Shifts the supply curve                      |  |  |  |
| Technology                                             | Shifts the supply curve                      |  |  |  |
| Expectations                                           | Shifts the supply curve                      |  |  |  |
| Number of sellers                                      | Shifts the supply curve                      |  |  |  |



# SUPPLY CURVE SHIFTERS: INPUT PRICES

- Examples of input prices: wages, prices of raw materials.
- A fall in input prices makes production more profitable at each output price, so firms supply a larger quantity at each price, and the *S* curve shifts to the right.



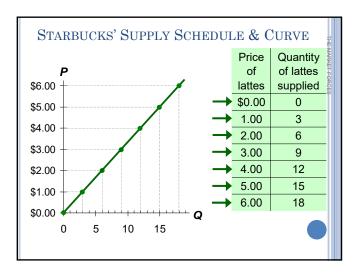
### THE SUPPLY FUNCTION

> An equation representing the supply curve: >  $Q_x^{S} = f(P_x, P_R, W, H_r)$ 

 $Q_x^s$  = quantity supplied of good X.  $P_x$  = price of good X.  $P_R$  = price of a production substitute. W = price of inputs (e.g., wages). H = other variable affecting supply.

### **INVERSE SUPPLY FUNCTION**

Price as a function of quantity supplied. Example:

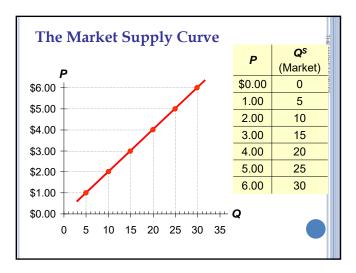

- Supply Function
  - $Q_x^{s} = 10 + 2P_x$
- Inverse Supply Function:  $2P_x = 10 + Q_x^s$  $P_x = 5 + 0.5Q_x^s$

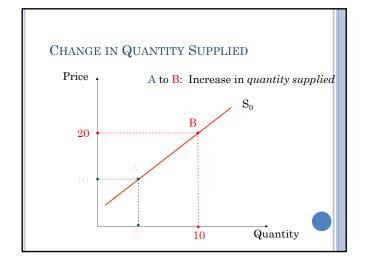
### THE SUPPLY SCHEDULE

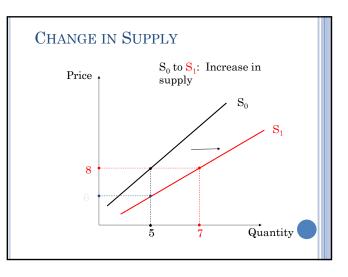
### • Supply schedule:

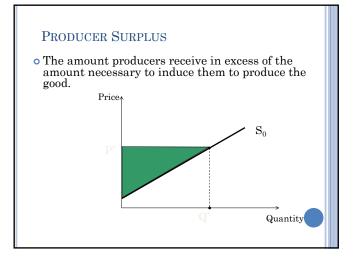
- A table that shows the relationship between the price of a good and the quantity supplied.
- Example: Starbucks' supply of lattes.
- Notice that Starbucks' supply schedule obeys the Law of Supply.

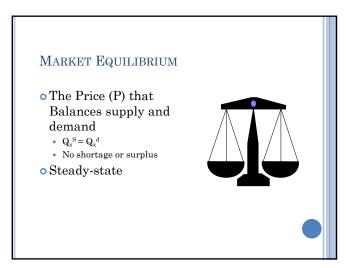
| <b>D</b> : |            |
|------------|------------|
| Price      | Quantity 🛔 |
| of         | of lattes  |
| lattes     | supplied   |
| \$0.00     | 0          |
| 1.00       | 3          |
| 2.00       | 6          |
| 3.00       | 9          |
| 4.00       | 12         |
| 5.00       | 15         |
| 6.00       | 18         |
|            |            |

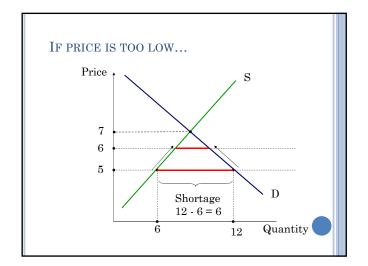


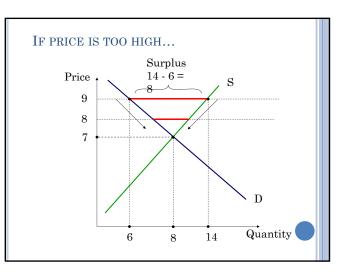


### MARKET SUPPLY VERSUS INDIVIDUAL SUPPLY

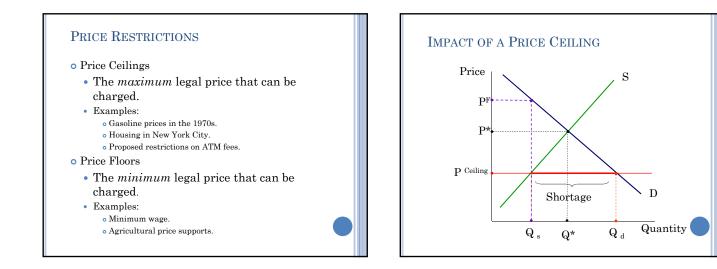

• The quantity supplied in the <u>market</u> is the sum of the quantities supplied by <u>all sellers at each price</u>.

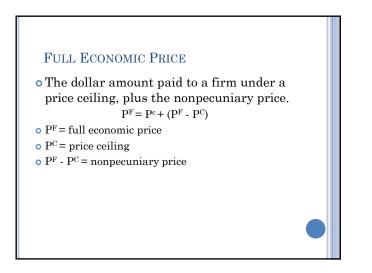

| <ul> <li>Suppose Starbucks and</li> </ul> | Jitters are the only two           |
|-------------------------------------------|------------------------------------|
| sellers in this market.                   | $(Q^s = \text{quantity supplied})$ |


| Price  | Starbucks |   | Jitters |   | Market <b>Q</b> s |  |
|--------|-----------|---|---------|---|-------------------|--|
| \$0.00 | 0         | + | 0       | = | 0                 |  |
| 1.00   | 3         | + | 2       | = | 5                 |  |
| 2.00   | 6         | + | 4       | = | 10                |  |
| 3.00   | 9         | + | 6       | = | 15                |  |
| 4.00   | 12        | + | 8       | = | 20                |  |
| 5.00   | 15        | + | 10      | = | 25                |  |
| 6.00   | 18        | + | 12      | = | 30                |  |



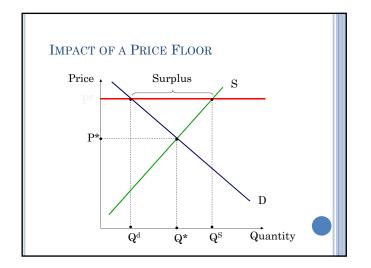



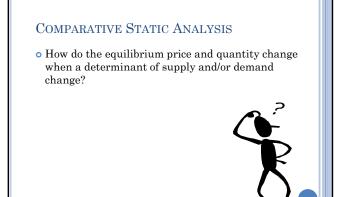







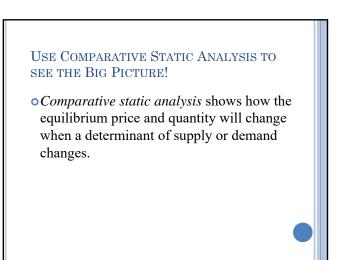


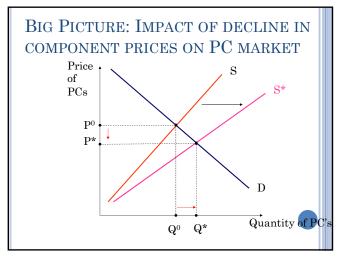

### AN EXAMPLE FROM THE 1970S

• Ceiling price of gasoline: \$1.


- 3 hours in line to buy 15 gallons of gasoline
  - Opportunity cost: \$5/hr.
  - Total value of time spent in line: 3 × \$5 = \$15.
  - Non-pecuniary price per gallon: \$15/15=\$1.
- Full economic price of a gallon of gasoline: \$1+\$1=2.





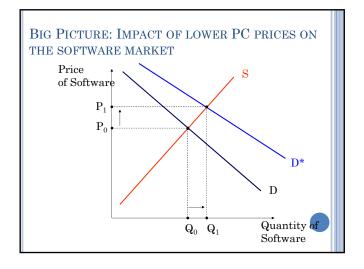

### Applications of Demand and Supply Analysis

- Event: The *WSJ* reports that the prices of PC components are expected to fall by 5-8 percent over the next six months.
- Scenario 1: You manage a small firm that manufactures PCs.
- Scenario 2: You manage a small software company.



### Scenario 1: Implications for a Small PC Maker

Step 1: Look for the "Big Picture." Step 2: Organize an action plan (worry about details).




### BIG PICTURE ANALYSIS: PC MARKET

- > Equilibrium price of PCs will fall, and equilibrium quantity of computers sold will increase.
- > Use this to organize an action plan
  - contracts/suppliers?
  - inventories?
  - human resources?
  - marketing?
  - do I need quantitative estimates?

### Scenario 2: Software Maker

- More complicated chain of reasoning to arrive at the "Big Picture."
- Step 1: Use analysis like that in Scenario 1 to deduce that lower component prices will lead to
  - a lower equilibrium price for computers.
- a greater number of computers sold.
- Step 2: How will these changes affect the "Big Picture" in the software market?



## BIG PICTURE ANALYSIS: SOFTWARE MARKET Software prices are likely to rise, and more software will be sold. >Use this to organize an action plan.

### CONCLUSION

- > Use supply and demand analysis to
  - clarify the "big picture" (the general impact of a current event on equilibrium prices and quantities).
  - organize an action plan (needed changes in production, inventories, raw materials, human resources, marketing plans, etc.).