

1

The Elasticity Concept

oHow responsive is variable " G " to a change in variable " S "

$$
E_{G, S}=\frac{\% \Delta G}{\% \Delta S}
$$

If $E_{G, S}>0$, then S and G are directly related.
If $E_{G, S}<0$, then S and G are inversely related.
If $E_{G, S}=0$, then S and G are unrelated.

Own Price Elasticity of Demand

$$
E_{Q_{X}, P_{X}}=\frac{\% \Delta Q_{X}{ }^{d}}{\% \Delta P_{X}}
$$

Negative according to the "law of demand."
Elastic: $\left|E_{Q_{x}, P_{x}}\right|>1$
Inelastic: $\left|E_{Q_{x}, P_{x}}\right|<1$
Unitary: $\left|E_{Q_{x}, P_{x}}\right|=1$

The Elasticity Concept Using

CALCULUS

- An alternative way to measure the elasticity of a function $G=f(S)$ is

$$
E_{G, S}=\frac{d G}{d S} \frac{S}{G}
$$

If $E_{G, S}>0$, then S and G are directly related.
If $E_{G, S}<0$, then S and G are inversely related.
If $E_{G, S}=0$, then S and G are unrelated.

4

Perfectly Elastic \& InElastic Demand

6

Own-Price Elasticity and Total Revenue

- Elastic

- Increase (a decrease) in price leads to a decrease (an increase) in total revenue. - Inelastic
- Increase (a decrease) in price leads to an increase (a decrease) in total revenue.
- Unitary
- Total revenue is maximized at the point where demand is unitary elastic.

Elasticity, Total Revenue and Linear Demand

9
10

11

Elasticity, Total Revenue and
Linear Demand

12

13

Elasticity, Total Revenue and Linear Demand

14

Elasticity, Total Revenue and

Linear Demand

15

Factors Affecting Own Price Elasticity

- Available Substitutes

The more substitutes available for the good, the more elastic the demand.

- Time
- Demand tends to be more inelastic in the short term than in the long term.
-Time allows consumers to seek out available substitutes.
- Expenditure Share

Goods that comprise a small share of consumer's budgets tend to be more inelastic than goods for which consumers spend a large portion of their incomes.

Cross Price Elasticity of Demand

$$
E_{Q_{X}, P_{Y}}=\frac{\% \Delta Q_{X}{ }^{d}}{\% \Delta P_{Y}}
$$

If $E_{Q_{X} P_{Y}}>0$, then X and Y are substitutes.

If $E_{Q_{X}, P_{Y}}<0$, then X and Y are complements.

Income Elasticity

$$
E_{Q_{x}, M}=\frac{\% \Delta Q_{X}{ }^{d}}{\% \Delta M}
$$

If $E_{Q_{X^{\prime}} M}>0$, then X is a normal good. If $E_{Q_{X^{\prime}} M}<0$, then X is a inferior good.

19

Uses of Elasticities

$>$ Pricing.
$>$ Managing cash flows.
$>$ Impact of changes in competitors' prices.
$>$ Impact of economic booms and recessions.
> Impact of advertising campaigns.
> And lots more!

20

Example 1: Pricing and Cash Flows

*According to an FTC Report by Michael Ward, AT\&T's own price elasticity of demand for long distance services is -8.64.
*AT\&T needs to boost revenues in order to meet it's marketing goals.
*To accomplish this goal, should AT\&T raise or lower it's price?

ANSWER: LOWER PRICE!

*Since demand is elastic, a reduction in price will increase quantity demanded by a greater percentage than the price decline, resulting in more revenues for AT\&T.

21
22

Example 2: Quantifying the Change

Answer

- Calls would increase by 25.92 percent!

$$
\begin{aligned}
& E_{Q_{X}, P_{X}}=-8.64=\frac{\% \Delta Q_{X}^{d}}{\% \Delta P_{X}} \\
& -8.64=\frac{\% \Delta Q_{X}^{d}}{-3 \%} \\
& -3 \% \times(-8.64)=\% \Delta Q_{X}^{d} \\
& \% \Delta Q_{X}^{d}=25.92 \%
\end{aligned}
$$

Example 3: Impact of a change in a COMPETITOR'S PRICE
>According to an FTC Report by Michael Ward, AT\&T's cross price elasticity of demand for long distance services is 9.06 .
$>$ If competitors reduced their prices by 4 percent, what would happen to the demand for AT\&T services?

ANSWER

AT\&T's demand would fall by 36.24 percent!

$$
\begin{aligned}
& E_{Q_{X}, P_{Y}}=9.06=\frac{\% \Delta Q_{X}{ }^{d}}{\% \Delta P_{Y}} \\
& 9.06=\frac{\% \Delta Q_{X}{ }^{d}}{-4 \%} \\
& -4 \% \times 9.06=\% \Delta Q_{X}{ }^{d} \\
& \% \Delta Q_{X}{ }^{d}=-36.24 \%
\end{aligned}
$$

